Persistence exponents and the statistics of crossings and occupation times for Gaussian stationary processes.

نویسندگان

  • G C M A Ehrhardt
  • Satya N Majumdar
  • Alan J Bray
چکیده

We consider the persistence probability, the occupation-time distribution, and the distribution of the number of zero crossings for discrete or (equivalently) discretely sampled Gaussian stationary processes (GSPs) of zero mean. We first consider the Ornstein-Uhlenbeck process, finding expressions for the mean and variance of the number of crossings and the "partial survival" probability. We then elaborate on the correlator expansion developed in an earlier paper [G. C. M. A. Ehrhardt and A. J. Bray, Phys. Rev. Lett. 88, 070602 (2002)] to calculate discretely sampled persistence exponents of GSPs of known correlator by means of a series expansion in the correlator. We apply this method to the processes d(n)x/dt(n)=eta(t) with n>/=3, incorporating an extrapolation of the series to the limit of continuous sampling. We then extend the correlator method to calculate the occupation-time and crossing-number distributions, as well as their partial-survival distributions and the means and variances of the occupation time and number of crossings. We apply these general methods to the d(n)x/dt(n)=eta(t) processes for n=1 (random walk), n=2 (random acceleration), and larger n, and to simple diffusion from random initial conditions in one to three dimensions. The results for discrete sampling are extrapolated to the continuum limit where possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rate of Entropy for Gaussian Processes

In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...

متن کامل

Level crossings and other level functionals of stationary Gaussian processes

Abstract: This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein...

متن کامل

ADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes

In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...

متن کامل

First-Occurrence Time of Hih-Level Crossings in a Continuous Random Process

This paper deals with the statistical distribution of the first-occurrence and first-recurrence times of the crossing of a given level in a continuous random process. Approximate forms of the first-occurrence and first-recurrence time densities are found by considering the successive crossings to form a renewal process. A relatively simple xponential distribution is found to give an appropriate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 69 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004